deductive system造句
例句與造句
- axiomatic extentions of the formal deductive system l
系統(tǒng)的公理化擴(kuò)張 - the natural deductive system of fuzzy logic
模糊邏輯中的自然演繹系統(tǒng) - the algebraic structure and deductive system of syntactic categories
理論的句法結(jié)構(gòu)歧義消解 - theory of deductive system in sub-bl algebras
代數(shù)的推理系統(tǒng) - about this, the completeness of the formal deductive systems is one of the main branches
在完全解決模糊推理的邏輯基礎(chǔ)問(wèn)題中,形式演繹系統(tǒng)的完備性是非經(jīng)典邏輯的主要研究方向之一。 - It's difficult to find deductive system in a sentence. 用deductive system造句挺難的
- in 1996, professor wang guojun built formal deductive system l * of fuzzy prepositional calculus, then in the frame of system l *, constructed the logical base for fuzfcy reasoning rules from sematics
王國(guó)俊教授于1996年建立了模糊命題演算的形式系統(tǒng)l~*,之后在系統(tǒng)l~*的框架中,從語(yǔ)義上為模糊推理規(guī)則構(gòu)建了邏輯基礎(chǔ)。 - however, the embeddability plays an important role in proving the completeness of the formal deductive systems . when an algebra system has embeddability . a formula is a tautology for each linearly ordered algebra if and only if it is a tautology for each algebra
在可嵌入性的保證下,當(dāng)一個(gè)公式對(duì)所有的某種線性代數(shù)系統(tǒng)是重言式時(shí),其必定對(duì)所有的同種代數(shù)系統(tǒng)是重言式。 - it is an extension of core of manna and pnueli " s pltl . in succession, a formal axiom deductive system is presented . it's soundness based formal semantic defined in this thesis is proved . as an example, we specify grc ( generalized railroad crossing ), which is a benchmark problem for real time systems, and verify it's safety and liveness
作為它的一次實(shí)際應(yīng)用,我們用它對(duì)于實(shí)時(shí)系統(tǒng)中的一個(gè)典型實(shí)例:grc(generalizedrailroadcrossing)進(jìn)行了描述,給出了它的系統(tǒng)規(guī)約,在此基礎(chǔ)上,演繹式的證明了系統(tǒng)的一個(gè)安全性和活性命題。 - as we all known, with the founding of euclidean geometry in ancient greece, with the development of analytic geometry and other kinds of geometries, with f . kline " s erlanger program in 1872 and the new developments of geometry in 20th century such as topology and so on, man has developed their understand of geometry . on the other hand, euclid formed geometry as a deductive system by using axiomatic theory for the first time . the content and method of geometry have dramatically changed, but the geometry curriculum has not changed correspondingly until the first strike from kline and perry " s appealing
縱觀幾何學(xué)發(fā)展的歷史,可以稱得上波瀾壯闊:一方面,從古希臘時(shí)代的歐氏綜合幾何,到近代解析幾何等多種幾何的發(fā)展,以及用變換的方法處理幾何的埃爾朗根綱領(lǐng),到20世紀(jì)拓?fù)鋵W(xué)、高維空間理論等幾何學(xué)的新發(fā)展,這一切都在不斷豐富人們對(duì)幾何學(xué)的認(rèn)識(shí);另一方面,從歐幾里得第一次使用公理化方法把幾何學(xué)組織成一個(gè)邏輯演繹體系,到羅巴切夫斯基非歐幾何的發(fā)現(xiàn),以及希爾伯特形式公理體系的建立,極大地發(fā)展了公理化思想方法,不管是幾何學(xué)的內(nèi)容還是方法都發(fā)生了質(zhì)的飛躍。 - the second part builds a new algebra syetem rl, which in the definition of bl-algebra gets rid of the stronger condition and studies the properties of rl-algebra . in the same time, using rl-algebra as the true-value field this paper builds a more extentively formal deductive system of fuzzy prepositional calculus------ logic system rl . obtains a series of theorems, and studies the completeness of rl logic
第二部分:在以bl邏輯為背景的bl代數(shù)的定義中去掉限制性較強(qiáng)的條件ab=a(ab),建立了一種新的代數(shù)系統(tǒng)rl,并進(jìn)一步研究了rl代數(shù)類的性質(zhì);以rl代數(shù)為賦值域建立了一種更為廣泛的模糊命題演算的形式系統(tǒng)??剩余格值邏輯系統(tǒng)rl,得到了一系列定理,同時(shí)研究了邏輯系統(tǒng)rl的(弱)完備性